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ABSTRACT

An earlier numerical analysis showed that the second approximate method of
Horowitz and Metzger can be rendered exceedingly accurate for reduction of thermo-
gravimetry data. It is demonstrated here that this result can be justified on the basis
of an asymptotic expansion with a nondimensional activation energy as the large
parameter. The order of miagniiude of the error is ascertained for this and two other
approximate methods. Higher-order terms in the approximation are developed.

INTRODUCTION

The usefulness of thermogravimetry (TG) for studying pyrolysis of solids
prompted investigations of approximate graphical methods that are suitable for
accurate and efficient data reduction’—3. For a single-reaction, first-order, Arrhenius
process in a sample whose temperature is programmed to increase linearly with time,
a detailed numerical comparison® illustrated the relative accuracy of three such
methods, but the underlying reasons for this relative ranking remained unclear.

As are many other processes in reacting systems, TG tests are characterized
by large values of the nondimensional activation energy, z, which is defined by
z = E/RT, where E is the activation energy, R is the universal gas constant, and Tisa
representative temperature attained by the system during the process. Typical values
of this parameter for TG range from 25 to 100; they rarely fall appreciably below 10.
Recent developments in asymptotic analysis®*, when applied to chemically reacting
systems?:%, enable one to extract asymptotic expansions that are valid in the limit of
large nondimensional activation energies. [t is the purpose of the present communica-
tion to develop such an asymptotic expansion for the TG curve of weight loss as a
function of temperature. The asymptotic expansion will be employed as a basis for
comparing the three approximate methods identified previously. In addition, higher-
order terms will be given.
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FORMULATION

Although the general approach can be applied for kinetics of greater complexity,
attention will be restricted to the weight changes in a single-reaction Arrhenius
process in a system whose temperature is increasing linearly with time, ¢, at a rate
dTidr=u.

For a pure solid substance pyrolized in an inert medium via a reaction in which
at least some of the pyrolysis products are volatile, ¥,, the weight at a given time,
is related to the fraction, ), of the number of initial molecules not vet decomposed
by the equation

y=(W—=W.,)(Wo—-W,). M

For clarity, the reaction will be assumed to be of first order; in the appendix the
results are extended to reactions oi order n # 1. Combining the above definition and
restrictions, one obtains

dy/dt = —Aye™= 2
or
d¥/dT = —(Ayiw)e™ 3)

where A is the Arrhenius pre-exponential constant.

Van Krevelen er al.! observed that most of the reaction occurs over a relatively
narrow range of temperatures in the vicinity of 7, the temperature at which the
reaction rate is maximum. The maximum rate is defined by equating to zero the time
derivative of eqn (2), riz.,

Ae " dyjdt—Aye™=d=/dt = O @

which, in view of eqn (3) and the definitions of ¥ and z, yields

E ART. 2)
zm = ——— = In m 3
RT, ( uE ©)

as an exact although implicit expression for 7,,. TG is a useful technique only if 4
is very large when E is large; the value of 4 must be such that eqn (5) yields reasonable
values of T, for reasonable vailues of u.

PREVIOUS APPROXIMATIONS

The previous approximations to y(7°) have been developed by making different
kinds of expansions of T about T,,. If additive constants of order z,~ ! are neglected,
then that of van Krevelen et al.! yields

Infin(1/3)] = (Z5+ 1) In(zx/2) ()
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while the first alternative of Horowitz and Metzger? gives

In{ln(1/)] = zul(zn/z) — 1] Y

and their second

Inflin(1/y)] = —z+zn. t)

For all three of these equations, In[in(1/p)]=0at T =T,,.

Since z,,/z = T/T,, eqns (6), (7), and (8) predict straight lines when in[ln(i/))]
is plotted versus In 7, 7, and — 1/T, respectively. From these lines £ may be computed
as

{A {in [In (1/y)1} 1

RT,, {i 6),
200 T } T_, for egn (6)

{A {In [In (1/)1}
AT

} RT? for eqn (7), and

{A {In [In (1/y)1}

B fi 8).
A(—1/T) } or eqn (%)

To illustrate the closeness of these approximations, Fig. 1 shows the exact
solution plotted on each of the three graphs suggested by eqns (6), (7) and (8) over
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Fig. 1. Deviations from the linearity predictions of eqns (6), (7) and (8) for a heating rate of 5°C/min
and a simple first-order reaction with 4 = 1.15x 10*? min~*! and £ = 55 kcal/mole (from ref. 3).
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the range 0.999 > 3->0.001 for a numerical example? in which 4 =1.15x 10'° min™ !,
E =55 kcal/mole, and #=35°C;min. The error in the derived activation energy
depends upon how the slopes are determined. If the assumption of linearity over the
entire curve is maintained and the slopes determined using the two end points in
Fig. 1, then the activation energy is overestimated by about 4 kcal/mole using eqn (6)
and by nearly 8 kcal/mole using eqn (7), but these errors decrease appreciably if the
slope is obtained in the vicinity of T,.

With eqn (8) the deviation from linearity in Fig. 1 is imperceptible. Regardless
of where the slope is taken along the curve, the value obtained for the activation
energy is too large by 2.340.2 kcal/mole. The slopes shown at the two ends of the
curve were obiained from the tables of Vallet’. A constant correction factor, derived
from Vallet’s tables, gives an activation energy in error by only 0.2 kcal/mole even
at the extreme slopes>.

ASYMPTOTIC ANALYSIS

Since y =1 and T = T, at 1 =0, integration of eqn (3) from T, to T produces

T
In (1) -4 j e~ dT” ©9)
¥ u Jro

where dummy variables of integration have been identified by primes. Strictly
speaking, r =0 at the start of 2a TG run, and T, is the ambient temperature (at which
a freshly prepared sample of weight ¥, may decompose at a significant rate); the
following equations cover this general case. However, in the typical TG experiment
the ambient reaction rate is immeasurably slow and the first detectable weight change
occurs when a temperature 7', appreciably above T is reached. For such experiments
T, arbitrarily may be taken as any temperature below 7T',—even, if desired, a temper-
ature below ambient—and the temperature-range restrictions specified below are of
no concern.

If, then, x =z"—z is introduced as the variable of integration, and if eqn (5)
is used to eliminate A/u, then egn (9) becomes

In(1/y) = [xpEn—-)za/2)* 1(2,5) (10)
where
s = (T—Tu)iT, (11)
and
= -2
I(z,s5) = J. (l +—'—) e *dx. (12)
) z

Equation (10) is exact since no approximations have been introduced.
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The factor €™ * makes the integrand in eqn (12) small when x is large. For large
values of z, one can therefore generate an asymptotic expansion of / by first intro-
ducing the expansion

(1 +f>-2 = i (n+1)<—- 3‘_—)" (13)

then integrating term by term. There results
Iz,5)~ Y (n+1)(—z)""J Cx"e"*dx. (14)
n=0 o

The integrals remaining in eqn (14) are incomplete gamma functions, and they must
be retained as such if the expansion is to be uniform in s for 0 < s < o0. However,
if sz is large, which will be true for large values of = unless s is of order 1/z or smaller,
then asymptotic expansions of the integrals in egn (14) can be used to simplify the
asymptotic expansion of I. Thus

» »

-x"e—xdx ’- x"e—‘dx——‘ x"e *dx

Jo JO sz

~

= n! —-e“:J (sz+uv)"e °de
o

n

=n! —e S (sz)" ) m!(")(sz)"". 1s)

m=0 m

Equation (14) becomes

n

Iz, 5) ~ i D U= =T Y (4D m!(:)(—s)" (s2)™™. (16)

n=0 m=0

This expansion is valid for z approaching infinity in such a way that sz approaches
infinity.

The restriction on sz is satisfied approximately for sz> 1, which defines a range
of temperatures, very near the initial temperature, for wnich eqn (16) is not valid.
For large values of z, this restricted range is quite small aa1d generally of no interest.
Thus for typical values of z and for T, about 300 K, the excluded range is roughly
10°C above ambient. In the usual TG experiment only negligible reaction will have
occurred, i.e., the value of y will still be exceedingly close to unity.

If s remains of order unity as z approaches infinity then, because of the factor
e” *, the double sum in eqn (16) is exponentially small compared with each term in
the first sum. In this case, the correct asymptotic expansion is obtained by deleting
the double sum. There are limits, e.g., s proportional to (1/z)Inz, in which low-order
terms in the double sum are larger than high-order terms in the first sum. Nevertheless,
in typical TG experiments, the doutle sum, which describes the dependence of the
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thermogram on the initial temperature, will be negligibly small. In these cases,
substitution of the approximate expansion obtained from eqn (16) into the expression
appearing in eqn (10) produces, after the logarithm of the result is taken, the asymp-
totic expansion

Infln(1/3)]~—z+-,+2In(z,/z)+In i (n+1)!(——z)""] (17)

n=0

Infin(1/3)] = —z+z+2In(zjz)—2f=+ O(z" )+ O(e™) (18)

where the order of the terms discarded by neglecting the double sum also has been
indicated explicitly.

COMPARISONS

It should be clear that the preceding development nowhere involved the
assumption that (T—T_)/T, is small. In this respect, it differs from the previous
approximations. The only approximations underlying eqn (18) are represented by the
requirements that I’z and e~ be small. Typically = = 50, so that the error stemming
from neglect-of the term O(z~?) in eqn (I8) is 0.0004. The error stemming from
neglect of the final term in eqn (18) will not exceed this provided that s>0.16, which
corresponds roughly to a temperature rise of 50°C above ambient.

At the extremes of a typical TG curve, e.g., for the temperature at which
¥y =0.959 in Fig. 1, this error is approximately two orders of magnitude less than
that calculated for the best of the previous approximations. If the term —2/z is
neglected in eqn (18), then the error using this equation remains one order of
magnitude less than that using eqn (8), and the restriction on s reduces approximately
to the requirement that the temperature has risen 20°C.

Since the determination of activation energies from TG data utilizes the slope
of the approximate curve, minimum departure from linearity, perhaps mcre than
minimum absolute error in In{Iln(1/y)], will facilitate accurate reduction of data.
The linearity of graphs for eqns (6), (7) and (8) can be tested on the basis of eqn (18).
Comparison of eqn (18) with eqns (6), (7) and (8) reveals that of the three previous
approximations, only eqn (8) is identical with eqn (18) up to terms of order In(z,/z).
Thus, the particular expansion about 7, given in eqn (8) fortuitiously agrees with
the first term of an asymptotic expansion in the large parameter z. This can explain
tbe high degree of linearity exhibited for eqn (8) in Fig. 1. Differentiation of eqn (18)
reveals that the slope corresponding to eqn (8), din[In(1/y)l/dz, is —1 —2/z+...,
which varies only from —1.037 to —1.044 at the extremities of the figure. On the
other hand, differentiation of eqn (18) with respect to In z or 1/z exhibits a much
greater variation in slope.
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To derive eqn (6) or (7) from eqn (18) necessitates introducing expansions
about T'= T,,. Two such expansions are

1 1 T—T.\

== =)o 19

Pl ()] 09
and

1_1 Hn(l) +] 20)

T T, T,

The lowest-order version of eqn (18), i.e., eqn (8), is converted to eqgn (7) by intro-
ducing eqn (19) and to

Infln(1/3)] = z, In(z,./2) 21

by introducing eqn (20). If the logarithmic term is retained in eqn (18), then the
expansion about 7, given in eqn (20) produces

Infin(/»M)] = (z.,+2) In(z,/z). (22)

For large = neither eqn (21) nor eqn (22) differs significantly from eqn (6).

In view of the established high degree of linearity for eqn (8), the observation
(Fig. 1) that eqn (6) is more nearly linear thanr eqn (7) can be explained from the fact
that the lowest-order approximation to eqn (6), viz., eqn (21), agrees better with
eqn (8) than does eqn (7). This can be seen by making two-term expansions of eqns (7),
(8) and (21) about T'=T_. Expressed in terms of T— T, the expansion is simply

T-T,
Zm = 1 for eqn (7),
( - ) qn (7)

m

T—T, (T—T 2 ] .
Ze Ll 21 +...|fo 8), and
[( T. ) T ) F ean (&), an

g _ 2
Z, [(T T"“) — 1<T T"’) +] for egn {21).
1. 2\ T,

Clearly, the last of these is about twice as good as an approximation to the second,
than is the first. Stated differently, the relevant observation is that for the expansion
of 1/T about T"= T,,, the function In(7/7,) looks more like the exact function, viz.
(T—-T.)/T, than does (T—T_)/T,,. But of course, formally the error is of the same
order for eqns (6), (7), (21) and (22), viz., of order z,[(T— T,.)/ T.)>.

These relationships further emphasize that an expansion about T, is not strictly
justified from 2n asymptotic viewpoint, that contributions occur from higher-order
terms in such an expansion, and that the reaction does proceed at temperatures
differing appreciably from 7. Nevertheless, in some sense most of the reaction does
occur near 71, when the activation energy is large. The sense in which this is true can
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be seen from eqn (18) in lowest order, i.e., eqn (8). In the derivation of eqn (18),
explicit restrictions were imposed on 7T but not on the range of y. Implied restrictions
on y are exceedingly lenient, especially in the range of small y. On the other hand,
suppose that one is interested only in the intermediate range of y over which the
bulk of the reaction occurs, i.e., the range defined by the sensitivity of the instrumen-
tation. This range can be specified by requiring —a<In{In(1/y)}<b, where a and b
are fixed positive numbers.

It is clear from eqn (8) that as =, approaches infinity, the corresponding temper-
ature range, i.e., T, (1 +a/z.) ' <T<T_(1—b/z)" !, narrows about T,,. If a/z,,, and
b;z_, are small compared with unity, then the relevant range of 7 becomes —a/z, <
(T—-T,)T,<b/z,, which justifies the expansions underlying eqns (6) and (7). As z,
approaches infinity, all of the expansions become equivalent and correct for
—a<Infln(1;3)]<b. However, usually values of a and b that exceed unity are of
interest?, and in such cases the restrictions a/z, <1 and b/z, <1, needed to justify the
expansion about 7, are somewhat more stringent than the restriction 1/z< 1, needed
to justify the asymptotic expansion.

GRAPHICAL METHOD OF IMPROVED ACCURACY

Differentiation of eqn (18) provides a simple means of improving the accuracy
in determining E from the plot of eqn (8}. Through terms of order Inz in eqn (18),

d{lnfin (i} _ _E (1 . 3) (23)
d (/T R\ "z B

For =z = 50, then, the assumption of a constant slope with value £/R is in ertor by 4%.
For the example in Fig. I this corresponds to an error of roughly 2 kcal/mole in E.
However, in the usual case (see Fig. 1), the temperatures of interest fall within a
narrow range about some intermediate temperature, 7. If this range is within 10%
of 7;, the assumption that 7= T; in the last term of egn (23) leads to the following
as an estimate of E that is better by an order of magnitude rhan that obtained directly
from egn (38):

£ {A {in [In (1/»)7}
4 (~1/T)

}R-:).R?;. 24)

For example in Fig. 1, use of eqn (24) is equivalent to multiplying the slope for
eqn (8) by 0.96 [as in eqn (19) of ref. 3] and gives a value of E in error by no more
than 0.2 kcal/mole. Within this accuracy 7; may be taken as any temperature between
the extremes of the curve. The value T; = 7, may be used, but if, instead, the mid-
point temperat.re (i.e., the temperature at which y = 0.92) is chosen, the error in £ is
reduced to about 0.05 kecal/mole.

Should such improvement be warranted, a better means of obtaining the more
accurate value of E graphically [by a reduction of the curvature in the line for eqn (8)]
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is also provided by egn (18). Instead of plotting Infin(1:y)] versus (1/7), one may
plot In[in(1/3)]—2In(7;T,) versus 1;T. Alternatively, one may simply plot In[In{1/;)]
—2In7 and not bother to observe 7,,. According to eqn (18), up to terms of order
1/z or e, whichever is larger, the graph in either case will be a straight line with a
slope of — E/R.

APPENDIX

For a reaction of order n, eqn (1) is

dy/dt = —k3” (AD)
and eqn (3) becomes
2 . n—1
E _ ., (nARTm Vin > (A2)
RT,, ukE

The analog of eqn (9) is

T
1_1 -1 = (n-—:)(é>f e” = dT’. (A3)
yu U/s 7o
As expected, eqn (A3) demonstrates that - approaches zero only as 7 approaches
infinity for 1> 1, but y reaches zero at a finite value of T for n<1.

It is easily found that what corresponds to eqn (10) is

‘"l_l — 1 =[exp(zn—2)] (:--—’5)~ (L:%) I(z.s), (A%)

v

Yo
where I again is given by eqn (12). It thus becomes clear that the generalization of
eqn (18) is

2

ln( ,,l..., - 1) = — 4z + In {n—_}_i-)-f— 2in (_:E) - O(Z_Z_) + C(e ).
¥ \"ym" < ol
(A5)

A plot of In[y~ ¢~ P~ 1]~2In T versus !/T provides a quite stringent linearity test
for an nth-order reaction and yields the activation energy from the slope — E/R.
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